1. Title of the Invention # MANUFACTURING METHOD OF LIQUID CRYSTAL DISPLAY PANEL # 2. Scope of Claim A manufacturing method of a liquid crystal display panel having a liquid crystal layer showing an electrooptic effect between two electrode boards, among which at least one board is transparent, characterized by printing a photocurable resin having a spacer material mixed therein on one of said two electrode boards as a seal to be open partly; hardening the printed photocurable resin by ultraviolet rays; dropping a liquid crystal within the seal; printing a photocurable resin having a spacer material mixed therein on the other electrode board in a pattern of enclosing said hardened seal that has an opening partly; and overlapping and hardening the photocurable resins on the two boards. # 3. Detailed Explanation of the Invention The present invention relates to a manufacturing method of a liquid crystal display panel, especially to a manufacturing method of a liquid crystal display panel that does not have a liquid crystal inlet and a structure of sealing up the liquid crystal inlet. In the conventional manufacturing method of a liquid crystal display panel, the inside of a cell having a hole for injecting a liquid crystal is made vacuous; a liquid crystal is filled in the inlet; external pressure is provided; and thereby the liquid crystals are exchanged inside the cell by the pressure differential. Then, the inlet is sealed up with an epoxy resin. However, this conventional method requires a vacuum device, needs several processes for sealing up, and thus has a great defect in terms of the cost. The object of the present invention is to provide a liquid crystal display panel at a low cost, removing such a defect. The present invention provides a manufacturing method of a liquid crystal display panel having a liquid crystal layer showing an electrooptic effect between two electrode boards, among which at least one board is transparent, characterized by printing a photocurable resin having a spacer material mixed therein on one of said two electrode boards as a seal to be open partly; hardening the printed photocurable resin by ultraviolet rays; dropping a liquid crystal within the seal; printing a photocurable resin having a spacer material mixed therein on the other electrode board in a pattern of enclosing said hardened seal that partly has an opening; and overlapping and hardening the photocurable resins on the two boards. The present invention will be explained with reference to the drawings on below. As is illustrated in Fig. 1, a mixture of a photocurable resin and a spacer material is printed on one electrode board (1) as a spacer in the illustrated shape. Here, the spacer is shaped to partly have an opening. An alumina powder or microperl (積水), for example, may be used as a spacer material, according to the type of a necessary gap. The photocurable resin including a gap material that is printed in the shape of a spacer is hardened by ultraviolet rays. A photocurable resin including said gap material is printed on the other electrode board as a spacer (6) in the shape of enclosing said spacer (5). This spacer (6) does not have an opening portion. Then, a necessary amount of a liquid crystal is precisely dropped inside the spacer (5) of the photocured electrode board (1) by a fixed-quantity discharging device. The electrode board (2) having said spacer (6) is overlapped and pressurized to the other electrode board to make the spacer (6) enclose the spacer (5), as is illustrated in Fig. 2. The spacer (6) is hardened by irradiating ultraviolet rays to the opening portion (7) of the spacer (5) wherein an extra crystal liquid is filled, and thereby the cell is completed. This method does not incur the problem of the conventional structure that the epoxy resin used in sealing up contacts a liquid crystal material, is diffused into the liquid crystal, scatters the alignment of the liquid crystal or affects electrical characteristics of the liquid crystal. Also, an extra liquid crystal that cannot be controlled by the fixedquantity discharging unit is stored in the opening portion (7) of the spacer (5), and air bubbles are prevented from remaining inside the cell. Also, the hardening by use of the ultraviolet rays is completed in a few seconds, and the period of time, during which the ultraviolet rays contact the liquid crystal, is short. Therefore, the alignment of the liquid crystal is not scattered, and electrical characteristics of the liquid crystal are not affected. Also, it is another advantage of the present invention that even though the liquid crystal is weak to the ultraviolet rays, it is not deteriorated by the radiation of the ultraviolet rays of a few seconds as explained above. As described above, the present invention reduces the number of sealing up processes, does not require a vacuum device and therefore provides a liquid crystal display panel at a low cost. ### 4. Brief Explanation of the Drawings Fig. 1 is a perspective view of the manufacturing process of the liquid display panel of the present invention. Fig. 2 is a plane figure of the locational relation of the spacer (5) and the spacer (6). 1: an electrode board 2: an electrode board 5: a spacer having an opening portion 6: a spacer # (9) 日本国特許庁 (JP) ①特許出願公開 # ⑩公開特許公報(A) 昭58-27126 Mint. Cl.3 G 02 F 1/133 G 09 F 識別記号 107 108 庁内整理番号 7348-2H 7348-2H 43公開 昭和58年(1983)2月17日 発明の数 1 審査請求 未請求 (全 2 頁) 砂液晶表示パネルの製造方法 9/00 東京都港区芝五丁目33番1号日 本電気株式会社内 @特 願 昭56-125549 መዘ 願 人 日本電気株式会社 @出 願 昭56(1981) 8 月11日 東京都港区芝5丁目33番1号 個代 理 人 弁理士 内原晋 明 の発 者 耳塚孝男 > 餌 ÁΠ 1. 発明の名称 液晶表示パネルの製造方法 ### 2. 脊許請求の範囲 少くとも1枚が透明である電極基板間に電気光 学効果を呈する液晶層を有する液晶表示パネルに おいて、前記2枚の電極基板の一方にシール部と してスペーサ材を混入した光硬化性樹脂を一部開 孔された状態にブリントして紫外線により硬化さ せ、とのシール部内に液晶を適下したのち他方の 電徳基板に、スペーサ材を混入した光硬化性樹脂 を上記硬化された一部開孔を持つシール部を包む パターンにプリントしたものを重ね合せて硬化し た事を特徴とする液晶表示パネルの製造方法。 #### 3. 発明の詳細な説明 本発明は、液晶表示パネルの製造方法、特に液 晶の注入口とこれを對止する構造のない液晶表示 パネルの製造方法に関する。 従来、液晶炭示パネルの製造方法は、液晶を注 入する孔を有するセル内を真空にし、液晶を注入 口に潰たして、外圧をかけ、圧力差でセル内に液 晶を交換し、しかる後、この注入口をエポキシ系 樹脂で封止する方法がよく知られている。 しかるにこの方法によるときは真空装蔵を受し、 かつ封止の為の工数を必要とするなどコストの面 で大いなる欠点を有していた。 本発明は、この欠点をなくし、安価な液晶表示 パネルを提供する事を目的とする。 本発明によれば少くとも1枚が透明である電極 基板間に観気光学効果を呈する液晶層を有する液 晶表示パネルにおいて、2枚の電極基板の一方に シール郡としてスペーサ材を混入した光敏化性側 脂を一部開孔された状態にブリントして紫外線に より硬化させ、とのシール部内に液晶を適下した のち他方の電板基板に、スペーサ材を混入した光 優化性樹脂を上記硬化された一部開孔を持つシー ル部を包むパターンにブリントしたものを重ね合 - 1 - せて硬化した事を特徴とする液晶表示パネルの製造方法が得られる。 以下本発明を図を参照し乍ら説明する。 第1図に示すように一方の電極基板1に光硬化 性樹脂とスペーサ材を混合したものをスペーサ 5 に示す形状に印刷する。との時、スペーサ5は1 郎に開孔をもつ形状とする。 スペーサ材は 所要の ギャップに応じ例えばアルミナ粉末又は、ミクロ パール(積水ファインケミカル製)などを用いて 目的を達成出来る。このスペーサ状に印刷された ギャップ材を含む熱硬化性樹脂を紫外線で硬化さ せる。他方の電極基板には、上記ギャップ材を含 む熱硬化性樹脂を上記スペーサ5を包み込む様を 形状のスペーサ 6 としてブリントする。このスペ ーサ6には開孔部を有しない。次に光硬化させた 電極基板1のスペーサ5の内部に所要量の液晶を 定量吐出装置により精密に適下した後、上記スペ ーサ6を有する電極基板2を第2図に示す様にス ペーサ6がスペーサ5を包み込むよりに重ね合せ て圧力を加え、余分を液晶がスペーサ5の開孔部 **- 3 -** ### 4. 図面の簡単な説明 第1図は本発明による液晶表示パネルの製造途 中における斜視図。 第2図は、スペーサ5とスペーサ6の位置関係を示す平面図。 1 … 電極基板、2 … 電極基板、5 … 開孔部を有するスペーサ、6 … スペーサ。 代理人 弁理士 内 原 7に充塡された所で、紫外線を照射してスペーサ6を硬化させてセルが完成する。この方法によれば、従来の構造で割止して用いられたエポキシ系倒脂が、硬化する迄に液晶材と扱触して液晶中に拡散し液晶の配向を乱し、又は道気的特性に影響である。さらに紫外線によって液晶を7に溜める事が出来、セル内に空気を防ぐ事が出来る。さらに紫外線によって液晶を7に溜める事が出来、セル内に空気を防ぐ事が出来る。さらに紫外線によって液晶を7に溜める事が出来。さらに紫外線によって液晶などの接触時間が少く液晶の配向を乱した放低気的特性に影響を与えたりする事が少い。さらに液晶は一般に紫外線に弱いものであるが、前配の様な数秒間の紫外線熱射では劣化が起らない事も本発明の利点である。 以上のぺたように本発明によれば、封止の為の 工数を省略でき、さらに大がかりな真空装置を必 要としないなど安価な液晶表示パネルを提供でき るものである。